INTRODUCTION

Among the neurodevelopmental disorders of childhood, attention deficit hyperactivity disorder (ADHD) is the flagship diagnosis, with an estimated worldwide prevalence of approximately 5% \(^1\). Although this disorder is observed in childhood and adolescence, among the most important clinical implications are its long-term effects, which extend into adulthood\(^2\). ADHD is generally associated with emotional and cognitive problems\(^3,4\) and may often be associated with...
deficiencies or retardation in motor development or coordination5,6. These negative effects present cumulatively as academic underachievement in school-aged children, which generally continues into adolescence7. Eventually, ADHD in adulthood may be associated with occupation-related failures8.

ADHD causes disruptions in the individual’s academic, social, and occupational life, and it may also affect other family members and threaten relationships9. ADHD may also be an early sign of subsequent psychiatric disorders, such as antisocial personality disorder10. When all these aspects are considered together, achieving successful treatment of ADHD becomes crucial.

Methylphenidate (MPH) is a potent dopamine and noradrenergic reuptake inhibitor, and it is the most widely used treatment for ADHD11,12. Clinical studies show that stimulants improve academic performance13,14, and, in 1996, a multimodal treatment study of ADHD (MTA) demonstrated that a three-times-daily regimen of immediate-release methylphenidate (IR-MPH) was the gold standard treatment for ADHD15. The major shortcoming of this daily dosing, however, is the problem of adherence to the medication regimen. Especially in school-aged children, the major responsibility for assuring safe treatment, with no discontinuation, is left to the teachers, which is not a reliable solution. The demand for a method of guaranteeing stable dosing of IR-MPH treatment has resulted in a better solution, namely the development of extended-release MPH formulations.

After two generations of extended-release formulations (i.e., the first one used a wax matrix system and the second one used biphasic release of both immediate- and extended release coated molecules) the third generation of MPH was manufactured as an osmotic release oral system (OROS) that uses osmotic pressure to achieve controlled delivery of medication, with a half-life of 6.4 hours12. This long plasma half-life of OROS-MPH provides all-day activity in patients, and clinical studies show that the efficacy of OROS-MPH is at least comparable to that of IR-MPH in both children16 and adolescents17. MPH is regarded as a well-tolerated and safe drug; nevertheless, approximately one quarter of children cannot tolerate stimulant medications. Whether the choice of treatment is IR- or OROS-MPH, this intolerance is generally related to higher doses of the drug, and both forms of MPH have similar adverse drug reaction rates18.

Current research comparing the efficacy and safety of MPH formulations in Turkish children is very limited. A literature search of national databases revealed only an eight-week, open-ended study that included 83 children between 7 and 14 years of age. In the study, OROS-MPH and IR-MPH were both found to be effective according to the evaluations of physicians and families, and no significant differences were found with respect to efficacy and adverse effects19. Due to this lack of data in Turkish children, in the current study, we aimed to evaluate the efficacy and reliability of OROS-MPH according to families, teachers, and clinicians, as well as to evaluate its efficacy and adverse effects compared with IR-MPH, in a population of Turkish children with ADHD. As the current literature suggests, biological diversities affect sensitivities to and side effects of psychotropic medications20, and adverse events observed from stimulant medications are generally dose-dependent21. For these reasons, we aimed to contribute to the variety of knowledge in the literature by presenting comparisons of these two medications in a less well-studied population.

METHODS

Sample

This study included 122 children between 7 and 15 years of age who were first admitted to the Child and Adolescent Psychiatry Department of Ege University Medical Faculty between January and June 2010 and were diagnosed with ADHD according to the Schedule for Affective Disorders and Schizophrenia for School Aged Children (Kiddie-SADS). The children had not been diagnosed with a psychotic disorder, bipolar
disorder, a pervasive developmental disorder, or mental retardation (defined as having an IQ lower than 80), and they were not taking another medication for anxiety, depression, or other disruptive behavior disorders. The study groups included participants taking OROS-MPH (n=68) and IR-MPH (n=54) who met the inclusion criteria.

Study Design

In this study, the hospital records of cases were retrospectively reviewed. Participants who met the inclusion criteria, had complete records for the initial, 4th-week, and 8th-week visits, and began treatment with 5 mg twice daily (10 mg/day) of IR-MPH or 18 mg/day of OROS-MPH were enrolled in the study. Drug doses were arranged according to the manufacturers’ directions. A pediatrician performed the physical examination, assessed heart rate, blood pressure, and weight at the 1st- and 8th-week visits and took laboratory measurements.

Evaluation Scales

Turgay DSM-IV Based Child and Adolescent Behavior Disorders Screening and Rating Scale (T-DSM-IV) (clinician and parent forms): This scale was first developed by Turgay to screen for disruptive behavior disorders, and Ercan et al. conducted a Turkish validity and reliability study. It includes 41 questions assessing the following areas: 9 for attention deficit, 9 for hyperactivity and impulsivity, 9 for oppositional defiant disorder, and 15 for conduct disorder. Each question is rated as 0= none, 1= some, 2= quite, or 3= much.

Clinical Global Impression-Improvement and Severity (CGI-I, CGI-S) Scales: These scales were developed by Guy for use in clinical trials to evaluate the course of psychiatric disorders in all ages. The CGI-S was used at the first week, and the CGI-S and CGI-I were used at the 8th week evaluations. A physician administered the CGI scales during semi-structured interviews. The CGI-I evaluates improvement as 1= very much improved, 2= quite improved, 3= minimally improved, 4= no change, 5= minimally worsened, 6= quite worsened, or 7= very much worsened.

Side Effect Assessment

A methylphenidate side effect scale that was designed for this study was used in each clinical interview, and questions regarding the presence of any side effects were asked of both the patients and parents, with responses noted. Mild side effects were managed by dosage regulation or changes in the daily drug intake times. At the end of 8 weeks, all the parents were asked to complete the methylphenidate side effect assessment scale.

Statistical Analyses

All statistical analyses were performed using SPSS for Windows, version 15.0, software (SPSS Inc., Chicago, IL, USA). Categorical variables were compared using a chi-square test, numerical variables in independent groups were compared using Student’s t-test, and drug efficacies over consecutive follow-ups were compared with a paired samples t-Test. Normal distributions of numerical variables were evaluated by a general examination of data by the Kolmogorov-Smirnov or Shapiro-Wilk tests, Detrended Plot graph, Coefficient of Variation, Histogram, and Skewness and Kurtosis evaluation.

Ethics Statement

Local approval was obtained from hospital administration for using the data on the Hospital Information System retrospectively.

RESULTS

This study included 122 children (OROS-MPH: 68 and IR-MPH: 54) between 7 and 15 years of age who met the inclusion criteria. The mean age of the participants was 9.1±1.7 years. Participants in the OROS-MPH group used MPH at a mean dose
of 30.8±11.5 mg/day, and those in the IR-MPH group took 27.5±6.1 mg/day, such that the MPH doses were not statistically different between the groups (t=1.90, p=0.058). Gender, age, total IQ score (according to the WISC-R), and ADHD sub-group distribution were not statistically differed between the study groups (Table 1).

Efficacy Measures

Both study groups showed significant decreases in parent-teacher T-DSM-IV total scores and all sub-scale scores at the 8-week evaluation compared with the initial evaluation (p<0.001 for all). The OROS-MPH group showed a 60% decrease (28.1 points) and the IR-MPH group showed a 40% decrease (22.3 points) in parent T-DSM-IV total scores, but no significant difference was found between the groups (p=0.485). Similarly, the OROS-MPH and IR-MPH groups showed decreases of 61% (27.5 points) and 42% (22 points), respectively, in teacher T-DSM-IV total scores, and there was no significant difference between the groups (p=0.144). In addition, there were no statistically significant differences between the groups in hyperactivity, oppositional defiance, and conduct scores according to the T-DSM-IV scale (Table 2).
OROS-MPH was found to be more effective (p=0.015) in improving the parent T-DSM-IV attention deficit scores compared with IR-MPH. Similarly, OROS-MPH was more effective (p=0.007) in improving the teacher T-DSM-IV attention deficit scores compared with IR-MPH (Table 2).

The CGI-Severity scores at the first evaluation were similar in both study groups (OROS-MPH: 6.1±0.7, IR-MPH: 5.9±0.6; t=1.16, p=0.287), but at the 8-week evaluation, the IR-MPH group (2.8±1.1) had significantly higher scores than the OROS-MPH group (2.2±1.2) (t=-2.57, p=0.011).

The evaluations at the 8th week revealed statistically significant differences between the groups with respect to CGI-Improvement scores (OROS-MPH: 1.8±0.9, IR-MPH: 2.3±1.2; t=-2.48, p=0.014). With CGI-I scores of 1 and 2 considered as representing a good treatment response, 80.8% of children in the OROS-MPH group and 59.6% of children in the IR-MPH group achieved good improvement, and this improvement was statistically significant (χ²=6.57, p=0.009) (Table 2).

Adverse Effects

At least one adverse effect was reported in 76% of the OROS-MPH group and in 79.6% of the IR-MPH group. No severe or life-threatening adverse effects were reported in either group. Emotional changes were significantly more frequent in the IR-MPH group compared with the OROS-MPH group (51.9% and 32.4%, respectively; p=0.030), but other adverse effects were similar between the groups (Table 3). Eighty-eight percent of the adverse effects in the OROS-MPH group and 86% of those in the IR-MPH group decreased or disappeared over time.

DISCUSSION

This study aimed to address the paucity of knowledge on the safety and efficacy of OROS-MPH in Turkish pediatric patients with ADHD. Overall, the results revealed that OROS-MPH significantly decreased the symptoms of attention deficit, hyperactivity/impulsivity, oppositional defiance, and conduct disorders.

Current research on the efficacy of OROS-MPH suggests that this treatment is effective in reducing the core symptoms of ADHD and significantly improves attention and behavioral problems. Similarly, a recent paper by a Turkish group suggested that OROS-MPH was effective in the treatment of ADHD according to parents, and clinical impression measures. We found in our study that OROS-MPH was more effective than IR-MPH according to the CGI-I, CGI-S, and parent-teacher T-DSM-IV attention deficit scales. The mean scores of the OROS-MPH group on the

<table>
<thead>
<tr>
<th>Table 3: Adverse effects (n=122)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Adverse Effect</td>
</tr>
<tr>
<td>Any</td>
</tr>
<tr>
<td>Loss of appetite</td>
</tr>
<tr>
<td>Weight loss</td>
</tr>
<tr>
<td>Stomachache</td>
</tr>
<tr>
<td>Nausea</td>
</tr>
<tr>
<td>Constipation</td>
</tr>
<tr>
<td>Emotional change*</td>
</tr>
<tr>
<td>Irritability</td>
</tr>
<tr>
<td>Increased mobility</td>
</tr>
<tr>
<td>Headache</td>
</tr>
<tr>
<td>Insomnia</td>
</tr>
<tr>
<td>Withdrawal</td>
</tr>
<tr>
<td>Tic 2</td>
</tr>
</tbody>
</table>

Chi-square, *p<0.05
T-DSM-IV, including the total, hyperactivity, oppositional defiance, and conduct disorder scale scores, were slightly higher than those of the IR-MPH group, although the differences were not statistically significant. Because the OROS-MPH has a longer duration of effect, teachers and families may give higher scores to patients on this treatment, which may be a reason for the higher scores that we found in our study. Another reason for these findings may be that IR-MPH must be used more than once a day and compliance with this regimen may be disrupted when patients are in school. Despite the knowledge that a three-times-daily dosing of MPH is the most effective method of drug delivery, it is also a known and reported fact that doses administered during the school day are generally the most neglected doses because of the psychosocial aspects of medication usage by children for a psychiatric problem. Furthermore, fluctuations in the plasma concentrations of short-acting MPH may cause symptom deterioration and adverse effects, which must be accounted for in the clinical interpretations of significant differences between the two drugs.

After OROS-MPH was introduced into the market, most patients, parents, teachers, and clinicians welcomed this new formulation, which can provide symptom relief with a once-daily dosing. Additionally, patients reported that shifting to OROS-MPH resulted in improvements in their daily lives. These intended shifts may be related to ease of use as well as increased efficacy due to elongated effect durations. However, there are debates in the current literature related to compliance with this extended-release formulation of MPH. A recent meta-analysis revealed that, according to some studies, there was no significant difference in compliance between the ER- and IR-MPH formulations. In contrast, another study comparing IR- and OROS-MPH reported that the results clearly support a greater efficacy of OROS-MPH due to both compliance and elongated effect duration that lasts throughout the day and early evening. Our results also support this favorable outcome of OROS-MPH.

One of the major concerns related to treatment choice is adverse effects. According to our results, adverse events and their frequencies were similar between OROS-MPH and IR-MPH, but emotional changes were more frequent with IR-MPH. In contrast to our findings, a previous study reported that emotional changes were more frequent with OROS-MPH, although the difference was not significant. We think that emotional changes were seen in the IR-MPH group more frequently due to fluctuations in plasma concentrations associated with its more-than-once-daily use.

The most frequently reported adverse effect was loss of appetite in both groups in our study. Current data in the literature on the adverse effects of OROS- and IR-MPH generally focus on two prevalent effects, namely decreased appetite and insomnia. Other reported prevalent adverse effects of OROS-MPH include headaches and abdominal pain. These side effects were generally reported to be present in 10-25% of patients. However, our study revealed that appetite loss was seen in 69.1% of children taking OROS-MPH. This value is higher than those in the literature, but is consistent with a previous report on Turkish children with ADHD, which reported appetite loss in 57.1% of children. This high prevalence of appetite loss associated with MPH treatment in our population may be related to nutritional factors, eating habits, or genetic characteristics of the population, which should be clarified by further studies.

Another significant finding of the current study is that OROS-MPH and IR-MPH were both effective in Turkish children with ADHD, despite their use at lower doses compared with the doses used in the MTA (1999) and Hechtman (2004) studies (34.4 and minimum of 35.8 mg/day, respectively). Current data suggest that there are no criteria for determining the optimal dose in psychostimulant therapy, and the dose can be escalated until a significant decrease in symptoms is obtained or a severe adverse effect is observed. A previous study showed that a daily dose of 24.8±8.1 mg of IR-MPH was sufficient to control ADHD symptoms in the Turkish population, whereas another study conducted with OROS-MPH reported that a daily...
Osmotic Release Oral System Methylphenidate is more effective than Immediate Release Methylphenidate: a retrospective chart ...

A dose in the range of 18-36 mg is adequate to control ADHD symptoms\(^{19}\). Including our study, three studies have revealed that lower doses of MPH are effective in the treatment of ADHD compared with Western populations. Another study conducted by Lee et al. similarly found that lower doses of OROS-MPH (18-36 mg/day) were effective and reliable in Korean children\(^{33}\). It is known that pharmacogenetic characteristics are deterministic of the response to MPH\(^{34}\). The dose differences across populations may be related to the genetic characteristics of the populations, and further pharmacogenetic studies are needed to clarify the treatment responses to MPH in different populations.

Limitations

A major limitation of this study is its retrospective nature; thus, randomized, double-blind, prospective studies are needed to generalize these findings. Another important limitation of our study is our inability to assess treatment adherence in both medication groups.

Competing interests

While making the study no support has been taken. Eyup Sabri ERCAN is in charge in the advisory board of Lilly and Janssen-Cilag, and the other authors declare no competing financial interests.

Authors’ contributions

All authors contributed to, read and approved the final version of the manuscript. UAA drafted the manuscript, ESE designed the study and revised the manuscript critically for important intellectual content, EE contributed to the data collection and participated in the statistical analysis, DY analyzed the data, interpreted the results and wrote the results section, and BKB contributed to the data collection and conducted the literature search.

Acknowledgements

We would like to thank Semra Ucar for her contributions in data collection.

References:

