Plasma Neuropeptide Y Levels in Medication Naive Adolescents with Major Depressive Disorder

Medine Yazıcı Gulec, Özlem Albayrak Ozalmete, Mucahit Ozturk, Huseyin Gulec, Kemal Sayar, Samet Kose

ÖZET:
İlaç tedavisi almayan major depresif bozukluklu ergenlerde plasma nöropeptid Y düzeyleri

Amaç:
Neuropeptide Y (NPY), anksiyete ve depresyon patofizyolojisinde önemi bir maddedir. NPY’nin emosyonel düzenlemeyi sürdürücü için kortikotropin salınımını sağlayan faktör (CRF) tarafından aracılık eden stres etkilerini giderdigi ileri sürülmüştür. Bu çalışmada ilk kez depresyon tanısı alan ergenlerde NPY düzeyleri, hastaların intihar girişimleri olması için ileri sürülmüştür. Bu çalışmada ilk kez depresyon tofizyolojisinde önemli bir maddedir. NPY’nin emosyonel düzenleme, anksiyete ile ilgili depresyona bir eflim için kullanıldı.

Buğündeler:
in the regulation of the stress response system and emotional behavior. Two other areas with high NPY expression that are involved in mediating fear and anxiety are the periaqueductal grey matter and the septum. High levels are also found in the hypothalamus, the primary area for origination of stress response (5). NPY is co-stored and co-secreted with noradrenaline in the brain and sympathetic nerve endings. It acts as a co-transmitter, neurohormone, and neuromodulator in the central and peripheral nervous systems (6). NPY and NPY receptors play an important role in the regulation of food intake (7), sexual behavior (8), information handling (9), cognition (10), learning and memory (11-13), control of blood pressure (14), sympathetic activity (15), modulation of emotional processing (3), and the regulation of stress and anxiety (13,16,17).

Exposure to acute traumatic and/or chronic stress is central to both mood and anxiety disorders. Most affective and stress induced psychiatric disorders have major disturbances in the stress regulatory systems of the body. There is also a high comorbidity of alcoholism, addiction, and cognitive dysfunction with various psychiatric conditions (3). There are several clinical studies investigating the cerebrospinal fluid (CSF) and plasma NPY concentrations in psychiatric disorders such as anxiety disorders, depression, stress related disorders, alcohol dependence, and eating disorders (18-21).

NPY may have an important role in the pathophysiology of major depressive disorder. Many clinical studies have demonstrated decreased NPY levels in the CSF and plasma of depressed patients when compared to healthy control subjects (22-26). According to preclinical studies, three lines of evidence from animal work supported the relevance of NPY in depression: (1) animal models of depression and NPY levels; (2) potentiation of NPY expression by antidepressant treatments; (3) administration of NPY compounds reduce depressive behavior (3,27,28). All preclinical evidence discussed above supports a role of NPY and the Y1 receptor in the pathophysiology of depression (29). The stimulatory effects of central NPY on the HPA axis may appear contradictory to the anti-stress and anti-anxiety role of the peptide, especially in depression where both reduced NPY tone and hyperactive HPA activity coexist. However, in depression, HPA hyperactivity is primarily a result of impaired HPA feedback which might not involve hypothalamic NPY responses. The amygdala is known to be the brain region intimately involved in mediation and processing of emotion and emotional memory. Reduced central NPY may in turn contribute to CRF hyperactivity in the amygdala which may induce elevated anxiety in depressed patients (3).

Lower plasma NPY and CRF concentrations in suicide attempters with depression have previously been reported (30-33). Human studies have also shown decreased NPY concentrations especially in the frontal cortex and caudate nucleus of suicide victims with major depression (34). Presently available evidence suggests that peripheral NPY is largely a marker of sympathetic nervous system activity, which is unrelated to central NPY-signaling of importance for emotionality and mood (16). In a recent study, Hou et al. showed that there were no differences between severe major depressive disorder and healthy controls in CSF NYP levels, however, significantly lower CSF NPY was found in first episode depressed patients compared with recurrent depressed patients. They concluded that NYP might be a marker for first episode of depression (23). It is possible that NYP contributes to the phenomenology of depression such as suicidality, psychophysiological, and emotional manifestations via different ways. Therefore, we thought plasma NPY concentrations might provide a valuable tool for prediction of suicidality and might be potential marker for evaluating adolescent depression.

To our knowledge, there are no studies in the literature investigating the possible role of NPY in adolescent depression. Adolescent depression may manifest itself with high risk of suicidality. Here, we investigated NPY concentrations in adolescents with MDD with regards to their history of suicide attempts. In this present study, we examined how NPY levels contributed the pathogenesis of major depressive disorder (MDD) and suicidality in a sample of first episode medication-naive adolescent patients with MDD.

METHODS

Participants and procedure

Thirty three consecutive outpatients presented with first episode MDD were recruited from the Adolescent Outpatient Clinics of the Bakirkoy Mental Health
Plasma neuropeptide Y levels in medication naive adolescents with major depressive disorder

Training and Research Hospital. The mean age of the patient group was 16.4 years (SD = 1.0), within a range of 15-18 years (Table 1). Adolescents had no prior psychiatric history nor received any treatments with psychotropic drugs before their visit to the hospital. All patients met criteria for a current major depressive disorder of unipolar subtype. The diagnoses of MDD was made with a trained clinician by using the Structured Clinical Interview for DSM-IV (SCID-I). A total of eleven patients with Axis I disorder other than MDD, including patients with bipolar disorder, and current substance abuse or dependence (n=3) were excluded from the study. Twenty two adolescents with MDD; 8 (36.4%) males and 14 (63.6%) females, were included in the study. The Beck Depression Inventory-Turkish Version and the Beck Anxiety Scale- Turkish Version were used to rate the severity of depressive and anxiety symptoms. Patients were free of any major physical illnesses and medical treatments. Forty one age- and gender matched healthy controls (HC); 16 (39%) males and 25 (61%) females, were recruited from the children of hospital staff and their acquaintance (Table 1). The mean age of the control group was 16.6 years (SD = 1.1) within an age range of 15-18. All control participants were interviewed with the SCID-I in order to exclude any Axis I disorders. They were also in good physical health and had no first degree relatives with known psychiatric disorders. The study was approved by the Ethics Committee of the Bakirkoy Mental Health Training and Research Hospital. Written informed consent was obtained from adolescent patients and healthy volunteers and also from their parents or legal guardians prior to the start of the study procedures.

Blood samples (7 ml) were drawn from the antecubital vein between 7:00 and 8:00 A.M. after 15 minutes rest and after an overnight fast. They were collected into the Lavender Vacutainer tubes containing EDTA and centrifuged at 1600 x g for 15 minutes at 4°C. Next the samples were stored at -70°C for six weeks. Plasma neuropeptide Y concentrations were measured by radioimmunoassay with commercial kits (Phoenix Pharmaceuticals, Belmont, CA). Regarding the characteristics of the kit used, the rabbit NPY antibody had a 100% cross-reactivity with human, rat and porcine NPY. The NPY antisera did not recognize pancreatic polypeptide. Sensitivity of the NPY assay was 0.27 ng/ml, and the interassay and intraassay coefficients of variation were <14% and <5%, respectively.

Psychological Assessments

Structured Clinical Interview (SCID) for DSM-IV Axis I Disorders. SCID-I is a semi-structured clinical interview developed for the major diagnosis of DSM-IV Axis I disorders (35). The reliability and validity of the Turkish version of the SCID has been conducted by Sorias et al. (36).

Beck Depression Inventory (BDI). This scale measures somatic, emotional, cognitive, and motivational symptoms related to depression (37). The goal of this scale is not to diagnose depression but to provide objective assessment about the severity of depressive symptoms. It includes 21 symptom categories, each having 4 items. Each item is scored from 0 to 3. The sum of these scores provides the final score for depression; with a higher score indicating a more severe illness. It was shown to be valid and reliable in Turkish samples (38,39).

Beck Anxiety Inventory (BAI). This instrument is a self-report scale revealing the frequency of anxiety symptoms experienced by the individual (40). It is a Likert-type scale composed of 21 items scored from 0 to 3. Higher total scores correlate with greater severity of anxiety symptoms. The validity and reliability of the BAI in a Turkish sample was done by Ulusoy et al. (41).
Statistical Analysis

Comparisons among the groups were made using the Mann Whitney U test. Correlations were examined using the Spearman’s test. Spearman’s correlation coefficients were obtained between the NPY score and the illness duration and psychological factors such as anxiety and depression (total and all sub-dimensions). In order to determine the relationship between the NPY scores and the depression score, partial correlation analysis was also used to adjust for the duration of the illness and anxiety. Partial correlation analyses with similar covariates were applied where appropriate to determine the relationship between the NPY levels and depression and anxiety scores, respectively. All statistical analyses were performed using the SPSS Version 9.0 for Windows (SPSS Inc., Chicago, IL).

RESULTS

Sociodemographic and clinical variables such as NPY levels, BDI, and BAI scores between patient and control groups are shown in Table 1. There were significant differences between depressed patients and controls in terms of age and illness duration. Additionally, there were significant differences in the NPY levels, depression, and anxiety scores between the groups. The partial correlation analyses revealed that there was a significant relationship between the NPY scores and the depression score, after adjusting for the duration of the illness and anxiety. Furthermore, the partial correlation analyses with similar covariates were applied to determine the relationship between the NPY levels and depression and anxiety scores, respectively.
Plasma neuropeptide Y levels in medication naive adolescents with major depressive disorder

NPY levels and BDI scores, however, BAI scores were not found significantly different.

When the major depressed patients were separated by history of suicide attempt, there were no significant differences in age, duration of illness, BDI, BAI, and NPY levels (Table 2).

Correlations between duration of illness, suicidality, NPY, BAI, and BDI total and subscales were shown in Table 3. NPY levels were found to be negatively correlated with duration of illness and feelings of guilt, and positively correlated with anxiety.

Partial correlation analyses with similar covariates were applied where appropriate to determine the relationship between the NPY levels and depression and anxiety scores, respectively. Partial correlations between the NPY levels and the illness duration, BDI and BAI scores were shown in Table 4. When anxiety was taken as a covariate, partial correlations between NPY levels and feelings of guilt were $r = -0.4073$, $p = 0.067$; when duration of illness was taken as a covariate partial correlations were found as $r = -0.5250$, $p = 0.015$.

DISCUSSION

NPY is widely distributed in the human brain and varying concentrations found in limbic system have been repeatedly implicated in the regulation of affective and emotional processing, as well as in the pathogenesis of MDD (29). Our sample of depressed patients showed lower levels of NPY compared to healthy controls. However, when the depressed patients were grouped with regards to suicidality, both groups did not show any significant differences. NPY levels were found to be negatively correlated with duration of illness and feelings of guilt and positively correlated with anxiety. When anxiety was taken as a covariate, partial correlations between NPY levels and feelings of guilt were $r = -0.4073$, $p = 0.067$; when duration of illness was taken as a covariate partial correlations were found as $r = -0.5250$, $p = 0.015$.

CSF NPY levels to be negatively correlated to anxiety scores in MDD patients, suggesting a possible link between low NPY levels and predisposition to anxiety-related or stress-induced depression (42). We speculated that lower NPY levels in our sample were perhaps indicating a phenomenological role rather than etiopathological role in depression.

Plasma NPY concentrations were found to be lower in suicidal patients with major depression (29,31,32). When the depressed patients in our sample were grouped with regards to presence of suicidality, both groups did not show any significant differences. This finding was not consistent with previous reports in the literature. Our sample has only 7 suicide attempters, it is difficult to make a conclusive statement.

Plasma NPY concentrations were found to be negatively correlated with duration of illness and feelings of guilt, and positively correlated with anxiety. The finding that NPY levels were decreasing while the duration of depression was getting longer might indicate the contribution of NPY system to the clinical symptomatology of depression. Since anxiety scores were decreasing while duration of illness was getting longer and also NPY concentrations had positive correlations with anxiety scores, these finding seemed to suggest that NPY was perhaps a marker for anxiety-related or stress-induced depression. When anxiety was taken as a covariate, partial correlations between the NPY concentrations and the illness duration, BDI and BAI scores also supported this possible link.

Plasma NPY concentrations were found not to be correlated with the BDI subscale scores except for feelings of guilt subscale. Additionally, a negative correlation was found between NPY concentrations and feelings of guilt. These findings might be attributed to specific features of adolescent depression symptomatology. Since this relationship remained significant in partial correlations where duration of illness was taken as covariate and disappeared when anxiety levels was taken as a covariate, it might indicate the importance of NPY system in anxiety-related adolescent depression research.

In conclusion; adolescent depressed patients were found to have lower NPY plasma levels compared to healthy controls. When the depressed patients were grouped with regards to presence of suicidality, no significant differences were found. NPY levels were
decreasing with duration of illness, increasing with feelings of guilt and anxiety severity. When adolescents were stress intolerant, plasma NPY levels were indicating a predisposition to anxiety-related depression. Our findings warrant further research in larger samples and patients with different clinical features.

Acknowledgment
The authors would like to thank Haluk Savas, MD for his assistance with the manuscript.

References:

38. Hisli N. The reliability and validity study of the Beck Depression Inventory in a Turkish sample. Psikoloji Dergisi 1998; 6: 118-22. [In Turkish].

